您的当前位置:首页正文

Fabrication of titanium oxide nanotube arrays by anodic oxidation

2021-03-23 来源:东饰资讯网
SolidStateCommunications134(2005)705–710

www.elsevier.com/locate/ssc

Fabricationoftitaniumoxidenanotubearraysbyanodicoxidation

JianlingZhao,XiaohuiWang*,RenzhengChen,LongtuLi

DepartmentofMaterialsScienceandEngineering,StateKeyLaboratoryofNewCeramicsandFineProcessing,TsinghuaUniversity,

Beijing100084,People’sRepublicChina

Received9July2004;receivedinrevisedform31January2005;accepted16February2005byC.E.T.Gonc¸alvesdaSilva

Availableonline3March2005

Abstract

TheformationoftitaniumoxidenanotubearraysontitaniumsubstrateswasinvestigatedinHFelectrolytes.Underoptimized

electrolyteandoxidationconditions,well-orderednanotubesoftitaniawerefabricated.Topologiesoftheanodizedtitaniumchangeremarkablyalongwiththechangingofappliedvoltages,electrolyteconcentrationandoxidationtime.Electrochemicaldeterminationandscanningelectronmicroscopeindicatethenanotubesareformedduetothecompetitionoftitaniaformationanddissolutionundertheassistanceofelectricfield.Apossiblegrowthmechanismhasalsobeenpresented.q2005ElsevierLtd.Allrightsreserved.

PACS:81.05;82.45

Keywords:A.Nano-tubes;A.Titaniumoxide;D.Anodicoxidation

1.Introduction

Titaniumdioxideisoneofthemostwidelystudiedchemicalsubstancesbecauseofitswidelyapplicationincatalytic,gas-sensingandcorrosion-resistancematerials.Moreover,itisgainingconsiderableinterestduetouniqueandexcellentpropertiesinoptics,electronics,photo-chemistryandbiology[1–3].Anodicoxidationisacommonlyusedsurfacetreatmentmethodespeciallyinformingporousaluminastructure.Formationofporousaluminastructurehasbeenwidelystudied.Manykindsofnanostructuresincludingnanowires,nanorodsandnano-tubeshavebeenfabricatedbytakingnanoporousaluminaastemplates[4–7].Therewereafewattemptstocompareanodicoxidegrowthonothervaluemetalswithporousalumina.Electrochemicaloxidizationoftitaniumhasbeenstudiedinsulfuricacid,phosphoricacid,aceticacidandchromicacidwithorwithoutHFsolution[2,8–10].

*Correspondingauthor.Tel.:C861062784579;fax:C861062771160.

E-mailaddress:wxh@mail.tsinghua.edu.cn(X.Wang).

Differentmorphologieswereobtainedinoxidizedtitaniumcomparedwithalumina[1,2,11].Amirrorimageofthebehaviorofporousaluminacannotbecopiedintheformingofporoustitania.

ThispaperinvestigatestheoxidationprocessoftitaniuminHFaqueoussolutionviaconstant-voltageexperiments.Underoptimizedelectrolyteandoxidationconditions,well-orderednanotubesoftitaniawerefabricated.Topologiesoftheanodizedtitaniumchangeremarkablyalongwiththechangingofappliedvoltages,electrolyteconcentrationandoxidationtime.Apossiblegrowthmechanismispresented.

2.Experimental

Thehighpuritytitaniumfoils(10!10!0.5mm3)usedinthisstudywereobtainedfromGeneralResearchInstituteforNonferrousMetals(Beijing,China).Theywerepolishedmechanicallytoamirrorimageandwashedintwice-distilledwaterandacetonebyultra-sonicwashingbeforeuse.Electrochemicalexperimentswerecarriedoutusingadirectcurrent(dc)voltagesource(DH1722,DahuaCoop.,Beijing,China).

0038-1098/$-seefrontmatterq2005ElsevierLtd.Allrightsreserved.doi:10.1016/j.ssc.2005.02.028

706J.Zhaoetal./SolidStateCommunications134(2005)705–710

Fig.1.Titaniummicrostructureafterdifferenttreatments(a)titaniummetalsafterbeingpolishedmechanically,(b)titaniummetalsafterbeinganodizedat20VabovetheHFsolution,(c)titaniummetalsafterbeinganodizedat20Vandthenetchedin1wt%HF,(d)titaniummetalsafterbeinganodizedat20Vfor30minin1wt%HFsolution.

Titaniumfoilswereusedasanodicelectrodewhileplatinum(20!20!0.1mm3)wasusedascathodicelectrode.Thedistancebetweenanodicandcathodicelectrodeswas20mm.Electrolyteinthisprocesswas0.1w5.0wt%HFsolution.Allsolutionswerepreparedfromreagentgradechemicalsanddeionizedwater.Allanodizationexperimentswerecarriedoutatroomtemperature.Duringtheexperiments,thesolutionswerestirredusingamagneticstirrer.Aftertheanodization,thesampleswererinsedindeionizedwater,driedandcharacterized.

ElectrochemicalmeasurementswereconductedusingCHI660aelectrochemicalanalyzer(CHInstrumentsInc.,Shanghai,China).RamanspectrawereobtainedonaRM1000RamanSpectrometer(RenishawPLC).X-raydiffractionmeasurementswereperformedonD/max-RBdiffractometer(Rigaku,Rotafles)usingCuKaradiation(0.15416nm).Themicrostructureswereobservedonfieldemissionscanningelectronmicroscopes(JSM-6301,JEOLInc.,Japan).Thecross-sectionphotographswereobtainedbyobservingmechanicallyfracturedsample.Thetrans-missionelectronmicroscopystructuresandselectedareaelectrondiffractionwereobtainedinTEM-200CXelectronmicroscope(JEOL,Japan).

3.Resultsanddiscussion

3.1.Structuresoftitaniummetalssurfaceafterdifferenttreatments

WhentitaniummetalswereanodizedinHFsolution,structuresoftheanodizedtitaniumchangeremarkablyalongwiththechangingofappliedvoltages,electrolyteconcen-trationandoxidationtime.Fig.1showstitaniummicro-structureafterdifferenttreatments.Thesurfaceoftitaniummetalsisevenandsmoothafterbeingpolishedcarefully.However,thesurfaceiscoveredwithacompactthinoxidefilmduetotheintrinsicpropertyofvalvemetal[2].Fig.1(c)indicatesthecompactoxidebeginstodissolveanddissolutiontakesplaceonlyinselectivearea.Inaword,compactoxidefilmatthetitaniumsurfaceexistedwithorwithouttheassistanceofelectricfieldandHFsolutioncanetchtheoxidequickly.Buttheetchingspeedwasdifferentatdifferentareaoftheoxideduetothedifferentstressonthesurfaceofoxidefilmwhichwascalledselectiveetching.Fig.1(d)showsthatthenanotubestructurewasformedafteranodizingtitaniummetalsat20Vfor30minin1wt%HFsolution.

J.Zhaoetal./SolidStateCommunications134(2005)705–710707

Fig.2.I–tcurvesatconstantvoltagesduringtheanodizingprocessin1wt%HFsolution.

3.2.Current/timetransientatconstantvoltages

Fig.2showsthecurrenttransients(I–tcurves)recordedduringholdingthesamplesat5and10Vin1wt%HFsolution.

Theinitialdrasticcurrentdropisduetotheformationofcompactoxidefilmatthebeginningstagewhichelevatestheresistanceandreducescurrentdensities.

Duringanodizationthecolorofthetitaniumoxidelayerchangesfromdarkpurpletoblue,yellowandgreenswiftly.Thecolorchangingisduetotheincreasingthicknessoftitaniumoxidethroughaninterferencephenomenonbetweenthereflectedbeamfromtheoxidesurfaceandthebeamwhichpenetratesthesurfaceoxideandthenisreflectedfromtheinterfaceofthesurfaceoxideandtitaniumsubstrate[12].ThenduetothesolubilityofthetitaniumoxideinHF-containingsolutions,thecurrentdensitiesstarttoincreaseinthenextstageandporesstarttogrowrandomly.Thisisfollowedbyacompetitionbetweenthe

Fig.3.Ramanspectraofanodizedtitanium,anataseandrutile(a)anatase,(b)rutile,(c)anodizedtitanium.

growingpores,andthecurrentdensitiesstarttodecreaseagain,untilastable,orderedporegrowthhasbeenestablished.Thecurrentdensitiesshowperiodicalfluctuations.Thefluctuationsarecloselyrelatedtothegrowthanddissolutionoftheoxidefilms.Thismaybeascribedtoapassivationandadepassivationreactionthatarecompeting[13].

3.3.Ramanspectraandselectedareaelectrondiffractionofanodizedfilm

Ithasbeenreportedthatinthecaseoftheanodizationoftitanium,theoxideexhibitsaphasetransitionwithincreasingpotentialfromamorphousphaseintoacrystallinephasesuchasanataseorrutile(brookitesometimes)[1,14].Thiscrystallographictransformationiscloselyrelatedtotheelectricalbreakdown,whichisdependentontheelectro-chemicalparameterssuchastheelectrolyteconcentrationandthecurrentdensity[10].Thecrystallizationdevelopsafterbreakdown.However,thereexistssomediscrepancyaboutthevaluesofthevoltageatwhichthebeginningofthebreakdownprocessandtheevolutionofcrystallizationbegins.Disagreementsbetweenvariousstudiesmayarisefromvaryingsurfacepreparationandgrowthconditionsexemplifiedbythecurrentdensity,thechemicalcompo-sition(concentration),andtheelectrolytetemperature.InHFsolution,previousauthorsshowedtheporoustitaniawasamorphousandnobreakdownwasmentioned[1,11].Butinourstudy,Ramanspectraofnanotubetitaniafilms(Fig.3)showedaweakRamanscattering.ComparingtheRamanspectrumoftitaniumafteranodizedin1wt%HFsolutionat20Vfor30minwiththatofrutileandanatase,onecanseethatthisoxidefilmwasconstitutedwithmixtureofamorphousandcrystallineoxides.Selectedareaelectrondiffractionwasconductedforthemechanicallyremovedtitaniananotubes.Theresultshowsthatthenanotubestructuresarepartlycrystalline(Fig.4).Thisindicatesthat

Fig.4.Selectedareaelectrondiffractionofthetitaniananotubes.

708J.Zhaoetal./SolidStateCommunications134(2005)705–710

thereisanevolutionofcrystallizationduringtheanodizingprocess.AtthispointitisinagreementwithRefs.[13,15]whichreportedananatasepeakinXRDdiagramsofporoustitaniaformedin0.15wt%HF-containingsolutionandbreakdownvoltageliesbelow5V.

3.4.Structuresoftitaniummetalssurfaceunderdifferentanodizingconditions

Differentanodizingconditionsleadtodifferentsurfacestructuresoftitania.Fig.5(a)–(d)givestheFE-SEMimagesofthesurfacestructuresobtainedwithdifferentvoltages,3,20,30,and40Vin1wt%HFsolutionfor30min.

Atlowanodizingvoltage(Fig.5(a))onlypartofthesurfacewerecoveredwithporoustitaniaandnonanotubesstructureformed.Asthevoltageincreasedto20V,nanotubesstructureformedwithaninnerdiameterofw100nm(Fig.5(b)).Afterthatfurtherraisingtheappliedvoltageleadstorapiddissolutionoftitaniawhichresultsinthinningandbreakageoftheformednanotubes(Fig.5(c)and(d)).Thedissolutionoftitaniaathighervoltageindicatesfield-assistantchemicaldissolutionoftheoxideattheoxide–electrolyteinterface.Duetotheappliedelectricfield,theTi–Obondundergoespolarizationandisweakened,promotingdissolutionofthemetaloxide[10,11].Fig.6givestheFE-SEMimagesofthesurfacestructuresobtainedwithdifferenttime,5,10,30and60minat20Vin1wt%HFsolution.At5minthetitaniananotubeshave

alreadybeenformed.Increasingtheanodizingtimehaslittleeffectontheinnerdiametersofthenanotubes(Fig.6(a)–(c)).InFig.6(d)obviousdissolutionofthesurfaceoxidetakesplaceandsomenanotubesoverlapduetolongeranodizingtime.Inaddition,itisobservedthatnewporesinsideexistingporesarecreatedalongwithincreasingtheanodizingtimewhichisinagreementwiththeresultsofJinsubChoi[2](Fig.6(d)).

Fig.7givesthecross-sectionimagesofanodizedtitaniumfoilsat20Vfor15minin1wt%HFsolution.Amoreclearstructurewithcolumnarshapeisrevealedfromthesephotographs(Fig.7(a)and(b)).Cross-sectionphotographsshowthefilmthicknessofnanotubesisabout200nmunderthiscondition(Fig.7(a)).Thebottomofthenanotube(Fig.7(b))isidenticalwiththeso-calledbarrierlayer,athinoxidizedlayerseparatingtheporouslayerfromthemetalsubstrates.Someofthenanotubeshavebeendestroyedduetothemechanicalfracturing.Thedestroyedpartsshowthehollowinteriorstructure(showninFig.7(b)witharrow).Thenanotubemorphologyisalsoverifiedbytransmissionelectronmicroscopyofthemechanicallyremovedfilm(Fig.8).3.5.Growthmodels

ElectrochemistryofgrowthofporoustitaniumoxideinHFsolutionisquitedifferentfromthatofporousaluminumoxide[1,2,15].Thedevelopmentoftitaniananotubearrays

Fig.5.FE-SEMimagesofthesurfacestructuresobtainedwithdifferentvoltagesin1wt%HFsolutionfor30min(a)3V,(b)20V,(c)30V,(d)40V.

J.Zhaoetal./SolidStateCommunications134(2005)705–710709

Fig.6.FE-SEMimagesofthesurfacestructuresobtainedwithdifferenttimeat20Vin1wt%HFsolution.(a)5min,(b)10min,(c)30min,(d)60min.

onthesurfaceoftitaniummaybedescribedasfollows.Initially,athinlayerofoxideformsonthetitaniumsurface(Fig.9(a))whichcorrespondstothedrasticallydropofcurrentdensityatthefirststageofoxidation(Fig.2).Stressesexistintheoxideduetothevolumechangeaccompanyingtheoxidationoftitanium.Thestressesencouragetheformationofcrystallineoxide[16].Whenitistransformedtoadensecrystallinestructuresuchasanataseorrutile,thestressintheoxidedecreasesobviously.Thiscrystallographictransformationiscloselyrelatedtothebreakdown[12](Fig.9(b)).Selectivedissolutiontakesplaceduetodifferentstressesandcrystallinestate.Theinitiallyformedporesareirregularduetothenonuniformcorrosion.Speedofdissolutionandoxidizationisdifferentinporesofdifferentdiameters.Alongwiththeanodization,thepores’diametersturntobemoreuniform(Fig.9(c)).

Thethicknessoftheoxidefilmisthickeratthewalloftheporethanatthebottom.Consequently,theelectricalfieldintensityattheporebottomismuchhigherthanthatatthewall,titaniawillbeconsumedathigherratenearthebottomofthepore,whichresultsinfurtherporegrowthtowardtheTisubstrate.(Fig.9(b)–(e))[1,10].AstheTi–Obondenergyishigh(323kJ/mol),inthecaseoftitaniaitisreasonabletoassumethatonlyporeshavingthintitaniawallswillbeformedduetorelativelylowionmobilityandrelativelyhighchemicalsolubilityoftheoxideintheelectrolyte,henceunanodizedmetallicportionscaninitiallyexistbetweenthepores.Astheporesbecomedeeper,the

electricfieldinthesemetallicregionsincreases,enhancingthefield-assistedoxidegrowthandoxidedissolution,andtheinterporesvoidsstartforming(Fig.9(e)).Therefore,bothvoidsandtubesgrowinequilibriumtofinallyyieldatubularstructure(Fig.9(f)).Ifthetitaniumoxideeitherinthewallorattheporebottomdissolvesatabalancerate,theporedepthkeepsconstantanddoesnotchangewithanodizingtime.Inaddition,breakdownsometimesoccursagaininsidetherepassivatedpores(Fig.9(g)and(h));itlookslikethereistheformationofsmallporesinsidetheexistingpores(Fig.6(d)).Thiskindofstructureoftentakesplacewhenincreasinganodizingtimeandusingstrongacid(forexampleHNO3)aswellasHFacid.Thiscanbeexplainedthatlongeranodizingtimeandstrongeracidwillfacilitatecrystallizationandbreakdownoftitania[12].

4.Conclusions

ThispaperinvestigatestheoxidationprocessoftitaniuminHFaqueoussolutionthroughconstant-voltageexper-iments.Underoptimizedelectrolyteandoxidationcon-ditions,wellorderednanotubesoftitaniawerefabricated.Topologiesoftheanodizedtitaniumchangeremarkablyalongwiththechangingofappliedvoltages,electrolyteconcentrationandoxidationtime.Incontrasttoporousaluminamembranes,adifferentmorphologywasobtainedinthecurrentstudy.Thenanotubearraysoftitaniaarevery

710J.Zhaoetal./SolidStateCommunications134(2005)705–710

Fig.7.Fe-SEMimagesofanodizedtitaniumfoilsat20Vfor15minin1wt%HFsolution(a)cross-section(b)bottomandcross-section.

interestingandmayhavemanypotentialapplicationsincatalytic,gas-sensing,optic,electronic,photochemicalandbiomedicalmaterials.Apossiblegrowthmechanismhasalsobeenpresented.

Fig.8.TEMimagesofanodizedtitaniumfoilsat20Vfor30minin1wt%HFsolution.

Fig.9.Schematicdiagramofformationoftitaniananotubearrays(a)oxidelayerformation,(b)burstofoxidebytheformationofcrystallites(poreformation),(c)growthoftheporesduetofield-assistantdissolutionoftitania,(d)immediaterepassivationofporetips,(e)voidsformationinthemetallicpartbetweenthepores,(f)formationofnanotubesoftitania,(g)burstofrepassivatedoxide,(h)formationofnewporesinsideexistingpores.

Acknowledgements

ThisworkissupportedbytheHighTechnologyResearchandDevelopmentProject,ChinaunderGrantNo.863-2001AA325010andtheMinistryofSciencesandTechnologyofChinathrough973-ProjectunderGrantNo.2002CB613301.

References

[1]D.Gong,etal.,J.Mater.Res.16(2001)3331.[2]J.Choi,etal.,Electrochim.Acta49(2004)2645.[3]R.Chu,etal.,SolidStateCommun.130(2004)789.

[4]K.Jain,S.T.Lakshmikumar,IETETech.Rev.2002;19293.[5]J.Chen,etal.,Chin.J.Chem.21(2003)665.

[6]J.Oh,etal.,Electrochem.SolidStateLett.7(2004)C27.[7]Y.C.Wang,etal.,J.Appl.Phys.95(2004)1444.[8]V.Zwilling,etal.,Electrochim.Acta1999;45921.[9]B.Yang,etal.,Biomaterials25(2004)1003.[10]Y.-T.Sul,etal.,Med.Eng.Phys.23(2001)329.[11]G.K.Mor,etal.,J.Mater.Res.2003;182588.[12]Y.-T.Sul,etal.,Med.Eng.Phys.23(2001)329.

[13]R.Beranek,etal.,Electrochem.SolidStateLett.6(2003)B12.[14]Lj.D.Arsov,etal.,J.Electrochem.Soc.38(1991)2964.[15]V.Zwilling,etal.,InterfaceAnal.1999;27629.

[16]

J.S.L.Leach,B.R.Pearson,CorrosionSci.1988;2843.

因篇幅问题不能全部显示,请点此查看更多更全内容