发布网友 发布时间:2022-04-23 06:43
共8个回答
热心网友 时间:2022-04-08 01:06
一、 办公软件
1) 熟练使用excel, Access,Visio等MS Office办公软件,可以制作相关的原型; (MS即microsoft微软,MS Office 是微软提供的系列软件,Word, Excel, PowerPoint, Access, OutLook,Publisher,InfoPath这7个办公软件中,常用的是前4个。) 2) 重点掌握EXCEL表,会使用高级功能,能快速制作报表,熟练使用EXCEL VBA;
二、 数据分析软件及方法
1)熟练使用各种数理统计、数据分析、数据挖掘工具软件,熟悉各种网站分析软件的应用,如Google Analytics 、百度统计、Omniture等;
2)具备相关数据分析软件的使用经验SPSS\SAS\EVIEW\STATA\R\Weka……
3)至少精通使用IBM Intelligent Miner、SAS Enterprise Miner、SPSS Clementine、LEVEL5Quest、SGI、WinRosa、ExcelVBA、S-plus、Matlab、SSIS等等常见数据挖掘软件中的一个进行数据挖掘的 开发工作;
4)熟练使用至少一种网站流量分析工具(Google Analytics、Webtrends、百度统计等),并掌握分析工具的部署、配置优化和权限管理;
5)精通一种或多种数据挖掘算法(如聚类、回归、决策树等); 6)熟悉维基编辑者优先; 7)使用软件的要求;
(7.1)掌握数据分析、挖掘方法,具备使用Excel、SQL、SPSS/SAS、Powerpoint等工具处理和分析较大量级数据的能力;
(7.2)能够综合使用各种数理统计、数据分析、制表绘图等软件进行图表、图像以及文字处理;
(7.3)掌握常用的数据统计、分析方法,有敏锐的洞察力和数据感觉,优秀的数据分析能力;
(7.4)能够综合使用各种数理统计、数据分析、数据挖掘、制表绘图等软件进行具有基本数据美感的图表、图像以及文字处理 。
三、 数据库语言
1)熟悉Linux操作系统及至少一种脚本语言(Shell/Perl/Python);
2)熟练掌握C/C++/Java中的一种,有分布式平台(如Hadoop)开发经验者优先; 3)熟悉数据库原理及SQL基本操作;
(3.1)了解Mysql,postgresql,sql server等数据库原理,熟悉SQL,具备很强的学习能力,写过程序,会perl,python等脚本语言者优先; (3.2)熟练应用mysql的select,update等sql语句; 4)熟悉sql server或其他主流数据库,熟悉olap原理; 5)熟悉Oracle或其他大型数据库。
四、 思维能力等方面
1)具备良好的行业分析、判断能力、及文字表达能力;
2)沟通、协调能力强,有较高的数据敏感性及分析报告写作能力; 3)理解网站运营的常识,能从问题中引申出解决方案,提供设计改进建议;
4)具有良好经济学、统计学及相关领域的理论基础,熟悉数理统计、数据分析或市场研究的工作方法,具有较强的数据分析能力;
5)熟悉数据分析与数理统计理论,具有相关课程研修经历。
五、 其他要求
1)较强的英文听说读写能力,英语6级以上;
2)文笔良好;
3)了解seo,sem优先;
4)知识要求:同时具备统计学、数据库、经济学三个领域的基础知识;英语四级或以上、熟悉指标英文名称;具备互联网产品设计知识;
5)具有深厚的数据分析、数据挖掘理论知识,深入了解相关技术;能熟练使用至少一种统计分析或数据挖掘工具。
热心网友 时间:2022-04-08 02:40
:学习数据分析师之前,你必须清楚自己想要达成什么目标。也就是说,你想通过这门技术来解决哪些问题或实现什么计划。有了这个目标,你才能清晰地开展自己的学习规划,并且明确它的知识体系。只有明确的目标导向,学习必备也是最有用的那部分
热心网友 时间:2022-04-08 04:32
还是看等级的,如果只是,CDA Level Ⅰ业务数据分析师,需要掌握概率论和统计理论基础,能够熟练运用 Excel、SQL、SPSS、Python 等一门专业分析软件,有良好的商业理解能力,能够根据业务问题指标利用常用数据分析方法进行数据的处理与分析, 并得出逻辑清晰的业务报告
热心网友 时间:2022-04-08 06:40
小编觉得,学习数据分析,一是要打下坚实的基础,才能屹立于专业之上,不被人看轻;二是根据企业的招聘技能要求情况,有的放矢。为此,小编给出以下建议,希望能帮到你。
(1)SQL数据库的基本操作,会基本的数据管理
(2)会用Excel/SQL做基本的数据分析和展示
(3)会用脚本语言进行数据分析,Python or R
(4)有获取外部数据的能力,如爬虫
(5)会基本的数据可视化技能,能撰写数据报告
(6)熟悉常用的数据挖掘算法:回归分析、决策树、随机森林、支持向量机等。
热心网友 时间:2022-04-08 09:04
1)具有业务敏感度,反应迅速,能够良好沟通;2)具有数据分析和数据仓库建模的项目实践经验;3)3年及以上数据分析经验,有互联网产品、运营分析经验;4)熟悉R、SAS、SPSS等统计分析软件,熟练运用Python,熟练使用
SQL、Hive等;5)本科或以上学历,数学、统计、计算机、运筹学等相关专业;那么对于正在入门阶段的同学们应该如何正确把握自己的学习方向呢?
热心网友 时间:2022-04-08 11:46
数学知识
对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。
而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。
分析工具
对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。
编程语言
数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。
当然其他编程语言也是需要掌握的。要有把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。
业务理解
对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。
对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。
逻辑思维
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。
数据可视化
数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。
对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。
协调沟通
数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。
对于高级数据分析师,需要开始带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。
热心网友 时间:2022-04-08 14:44
第一 数据思维,对数据敏感性要高,建立起兴趣,自己要刻意练习
第二 业务能力,多关注行业分析报告,cda有很多原创文章
第三 熟练使用数据分析工具,比如excel sql语言 spss python sas等,建议精通1-2门就好,以后需要其他工具工作中再学习.
第四 扎实统计和数学基础,比如微积分,线性代数 模型有聚类,关联分析、SVM、神经网络 贝叶斯网络 朴素贝叶斯 随机森林等
热心网友 时间:2022-04-08 17:58
要学习Python、R、SAS等编程工具;对数据仓库需要了解可以去九道门做些实验项目;如果你觉得还是难,那就采用最基础的学习路径,直接买MYSQL关系型数据库的书看,随便到网上去找个免费的MYSQL课程听;;分布式存储HDOOP需要简单了解;云计算的技术作为了解就可以了;数据可视化不是很难,如果不要求特别美工的话,大家先理解图表,再研究研究仪表板,阿里云的Quich BI及DataV,百度的echarts都不错,主要是展示的业务结构需要规划;大数据技术:这个相对来说有些难度,如果是学数学统计类专业小伙伴就非常有优势了,其他专业的小伙伴也不用担心,毕竟工作后还可以继续学习,在工作中用的比较多的是聚类、关联、决策树、线性回归等,如果你不去做模型和算法工程师那么只需要会用就可以了,实在不行有专业的工具让我们用,阿里云的机器学习PAN是可以直接出结果的工具;。可以到天池大赛上去看一些案例,自己做做训练。如果自学的小伙伴觉得很难坚持,那就只能去报班了,九道门之类的,如果要成为大数据分析师的话就要时间沉定,或者让老师带你,像我就是进到决明后由老师带了半年,现在基本上已经能熟练的搞这一套了。