发布网友 发布时间:2022-04-22 07:45
共2个回答
热心网友 时间:2022-06-17 23:46
概率论是研究随机变量,随机事件,随机函数,随机过程等理论方法和统计规律的一门科学,在科学研究和国民经济中发挥越来越重要的作用。掌握好这门科学并能灵活运用就可以做许多许多工作!下面提一个问题:
对一个参数 x 测量 n次,得到 n个数据:x₁,x₂,. . . , xₙ 。对 n个数据如何处理得到一个
具有某种精度意义的统计量。为此构造一个均方误差:
均方误差 : Q(μ)= (1/n) Σ(i=1->n) (xᵢ-μ)² 为使均方误差Q(μ)取极小的 μ值就作为参数
x的估计值,它就被称之为数学期望 :
dQ(μ)/dμ = (2/n)Σ(i=1->n) (xᵢ-μ)=0
从中解出: μ = (1/n)Σ(i=1->n) xᵢ
它就是所说的数学期望:E(x) = μ ----- 用它代表参数 x测量值可期望均方误为最小。
方差: σ² = (1/n)Σ(i=1->n) (xᵢ-μ)²
变异系数: v = σ/μ ------- 用于不同物理量间分散度的比较!
热心网友 时间:2022-06-17 23:46
你现在是上高中吗?这些可能你们还没学过,反正我是到大学才学的,X1是均匀分布,X2是正态分布,X3是指数分布,它们的期望都可由参数直接读出,最后的结果则直接由期望的线性性质求出。