发布网友 发布时间:2022-04-22 19:44
共1个回答
热心网友 时间:2023-04-26 00:43
二、异同点
① 二者都是由节点和边组成的图。但是图网络中的实体都是客观存在的,是对真实世界关系的一种呈现;知识图谱主要是把客观世界潜在的知识结构呈现出来,实体可以是抽象的名词。
② 二者都是异质信息网络,但是任务不同。KG是一种知识量丰富的异质信息网络(Heterogeneous Information Network, HIN),它更关注建模实现对关系、节点的表示,模型学习的重点是节点之间的关系,以更好地存储、抽取、推理知识。NG建模任务更关注节点的表示,模型学习的重点是图网络的结构,以达到对节点分类、聚类、链接预测的目的。
三、图网络表示学习(Graph Embedding) VS 知识图谱表示学习(Knowledge Graph Embedding)
也可以称图嵌入学习,分为图网络嵌入graph embedding以及知识图谱嵌入knowledge graph embedding。从起源看,这两个任务中最火的方法DeepWalk和TransE,都是受到了word2vec启发提出来的,只是前者是受到了word2vec处理文本序列、由中心词预测上下文的启发;而后者受到了word2vec能自动发现implicit relation (也就是大家常说的 king - man = queen - woman)的启发。
两者的相同之处是目标一致,都旨在对研究对象建立分布式表示。不同之处在于,知识表示重在如何处理实体间的显式关系上;而网络表示重在如何充分考虑节点在网络中的复杂结构信息(如community等)。
1)学习目标不同
网络表示比较注重在嵌入式空间中保留网络的拓扑结构信息,知识图谱的表示在保留结构信息的基础上,也同样注重于关系的重要性,以及它们的头尾关系。知识图谱表示学习更偏向关系建模,在保留结构信息的基础上强调关系和头尾关系,强调的是节点和关系的表示,节点和关系同样重要,因此,知识图谱表示学习中往往指明了关系,比如水果和猕猴桃之间是所属关系。
2)学习方法不同
网络表示学习通常包括三种:基于矩阵分解的模型,比如SVD;基于随机游走的模型,比如DeepWalk;基于深度神经网络的模型,包括CNN、RNN等;此外还有同质网络、异质网络的区分,还有属性网络、融合伴随信息的网络等。
与此不同的是,典型的知识图谱表示算法包括trans系列的算法,如TransE、TransR、TransH等,通过这个三元组去刻画实体和关系的向量表示。
抢首赞 评论 分享 举报 收起
为你推荐:
特别推荐
哪些方法可以最大程度提升工作效率?
感染螨虫可能会造成什么严重后果?
新冠无症状需要治疗吗?
生活中有哪些「省钱存钱」小妙招?