发布网友 发布时间:2022-04-21 07:02
共15个回答
热心网友 时间:2022-04-19 01:02
三角函数图形曲线在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有
正弦函数
sinθ=y/r
余弦函数
cosθ=x/r
正切函数
tanθ=y/x
余切函数
cotθ=x/y
正割函数
secθ=r/x
余割函数
cscθ=r/y
(斜边为r,对边为y,邻边为x。)
以及两个不常用,已趋于被淘汰的函数:
正矢函数
versinθ
=1-cosθ
余矢函数
coversθ
=1-sinθ
正弦(sin):角α的对边比上斜边
余弦(cos):角α的邻边比上斜边
正切(tan):角α的对边比上邻边
余切(cot):角α的邻边比上对边
正割(sec):角α的斜边比上邻边
余割(csc):角α的斜边比上对边
[编辑本段]同角三角函数间的基本关系式:
·平方关系:
sin^2α+cos^2α=1
1+tan^2α=sec^2α
1+cot^2α=csc^2α
·积的关系:
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
cotα=cosα×cscα
secα=tanα×cscα
cscα=secα×cotα
·倒数关系:
tanα
·cotα=1
sinα
·cscα=1
cosα
·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
直角三角形ABC中,
角A的正弦值就等于角A的对边比斜边,
余弦等于角A的邻边比斜边
正切等于对边比邻边,
·[1]三角函数恒等变形公式
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·三角和的三角函数:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·辅助角公式:
Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中
sint=B/(A²+B²)^(1/2)
cost=A/(A²+B²)^(1/2)
tant=B/A
Asinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)
tan(2α)=2tanα/[1-tan²(α)]
·三倍角公式:
sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(60-α)
cos(3α)=4cos³(α)-3cosα=4cosα·cos(60+α)cos(60-α)
tan(3α)=tan
a
·
tan(π/3+a)·
tan(π/3-a)
·半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+c
很高兴回答楼主的问题
如有错误请见谅
热心网友 时间:2022-04-19 02:20
正弦函数 sinθ=y/r
余弦函数 cosθ=x/r
正切函数 tanθ=y/x
余切函数 cotθ=x/y
正割函数 secθ=r/x
余割函数 cscθ=r/y
以及两个不常用,已趋于被淘汰的函数:
正矢函数 versinθ =1-cosθ
余矢函数 vercosθ =1-sinθ
同角三角函数间的基本关系式:
·平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·积的关系:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
直角三角形ABC中,
角A的正弦值就等于角A的对边比斜边,
余弦等于角A的邻边比斜边
正切等于对边比邻边,
三角函数恒等变形公式
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·辅助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
·半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=vercos(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
·万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
部分高等内容
·高等代数中三角函数的指数表示(由泰勒级数易得):
sinx=[e^(ix)-e^(-ix)]/(2i)
cosx=[e^(ix)+e^(-ix)]/2
tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…
此时三角函数定义域已推广至整个复数集。
·三角函数作为微分方程的解:
对于微分方程组 y=-y'';y=y'''',有通解Q,可证明
Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。
补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。
特殊三角函数值
a 0` 30` 45` 60` 90`
sina 0 1/2 √2/2 √3/2 1
cosa 1 √3/2 √2/2 1/2 0
tana 0 √3/3 1 √3 None
cota None √3 1 √3/3 0
三角函数的计算
幂级数
c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)
它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...cn...及a都是常数, 这种级数称为幂级数.
泰勒展开式(幂级数展开法):
f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...
实用幂级数:
ex = 1+x+x2/2!+x3/3!+...+xn/n!+...
ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|<1)
sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞)
cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞<x<∞)
arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|<1)
arccos x = π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x|<1)
arctan x = x - x^3/3 + x^5/5 - ... (x≤1)
sinh x = x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞)
cosh x = 1+x2/2!+x4/4!+...(-1)k*x2k/(2k)!+... (-∞<x<∞)
arcsinh x = x - 1/2*x3/3 + 1*3/(2*4)*x5/5 - ... (|x|<1)
arctanh x = x + x^3/3 + x^5/5 + ... (|x|<1)
--------------------------------------------------------------------------------
傅立叶级数(三角级数)
f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)
a0=1/π∫(π..-π) (f(x))dx
an=1/π∫(π..-π) (f(x)cosnx)dx
bn=1/π∫(π..-π) (f(x)sinnx)dx
特殊值
sin30=1/2
sin45=二分之根号二
sin60=二分之根号三
sin90=1
sin120=二分之根号三
sin135=二分之根号二
sin150=1/2
sin180=0
cos30=二分之根号三
cos45=二分之根号二
cos60=1/2
cos90=0
cos120=-1/2
cos135=-二分之根号二
cos150=-二分之根号三
cos180=-1
tan30=三分之根号三
tan45=1
tan60=根号三
非特殊值又不在公式范围内的题目不可能叫你空手算的,也不太可能算出来准确答案,732YY已说了,我就不多言了
参考资料:http://zhidao.baidu.com/question/55680035.html
热心网友 时间:2022-04-19 03:55
同角三角函数的基本关系式
倒数关系:
商的关系:
平方关系:
tanα
·cotα=1
sinα
·cscα=1
cosα
·secα=1
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
sin
2
α+cos
2
α=1
1+tan
2
α=sec
2
α
1+cot
2
α=csc
2
α
诱导公式
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)
两角和与差的三角函数公式
万能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα
·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα
·tanβ
2tan(α/2)
sinα=——————
1+tan
2
(α/2)
1-tan
2
(α/2)
cosα=——————
1+tan
2
(α/2)
2tan(α/2)
tanα=——————
1-tan
2
(α/2)
半角的正弦、余弦和正切公式
三角函数
的降幂公式
二倍角的正弦、余弦和正切公式
三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos
2
α-sin
2
α=2cos
2
α-1=1-2sin
2
α
2tanα
tan2α=—————
1-tan
2
α
sin3α=3sinα-4sin
3
α
cos3α=4cos
3
α-3cosα
3tanα-tan
3
α
tan3α=——————
1-3tan
2
α
三角函数的和差化积公式
三角函数的积化和差公式
α+β
α-β
sinα+sinβ=2sin—--·cos—-—
2
2
α+β
α-β
sinα-sinβ=2cos—--·sin—-—
2
2
α+β
α-β
cosα+cosβ=2cos—--·cos—-—
2
2
α+β
α-β
cosα-cosβ=-2sin—--·sin—-—
2
2
1
sinα
·cosβ=-[sin(α+β)+sin(α-β)]
2
1
cosα
·sinβ=-[sin(α+β)-sin(α-β)]
2
1
cosα
·cosβ=-[cos(α+β)+cos(α-β)]
2
1
sinα
·sinβ=-
-[cos(α+β)-cos(α-β)]
2
化asinα
±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
热心网友 时间:2022-04-19 05:46
三角函数一共有6个:
直角三角形中:
正弦:sin
对边比斜边
余弦:cos
邻边比斜边
正切:tan
对边比邻边
余切:cot
邻边比对边
正割:csc
斜边比对边
余割:sec
斜边比邻边
设三角形三个内角分别为A,B,C;对边分别为a,b,c
正弦定理:
a/sinA=b/sinB=c/sinC=2R,(R为该三角形外接圆半径)
余弦定理:
c2=a2+b2-2abcosC
b2=a2+c2-2accosB
a2=b2+c2-2bccosA
由余弦定理可推导出:
a=bcosC+ccosB
b=ccosA+acosC
c=acosB+bcosA
海仑公式:
SΔABC=√[p(p-a)(p-b)(p-c)],而公式里的p为半周长:
p=(a+b+c)/2
1
三角函数公式大全
一,诱导公式
口诀:(分子)奇变偶不变,符号看象限.
1.
sin
(α+k·360)=sin
α
cos
(α+k·360)=cos
a
tan
(α+k·360)=tan
α
2.
sin(180°+β)=-sinα
cos(180°+β)=-cosa
3.
sin(-α)=-sina
cos(-a)=cosα
4*.
tan(180°+α)=tanα
tan(-α)=tanα
5.
sin(180°-α)=sinα
cos(180°-α)=-cosα
6.
sin(360°-α)=-sinα
cos(360°-α)=cosα
7.
sin(π/2-α)=cosα
cos(π/2-α)=sinα
8*.
Sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
9*.
Sin(π/2+α)=cosα
cos(π/2+a)=-sinα
10*.sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
二,两角和与差的三角函数
1.
两点距离公式
2.
S(α+β):
sin(α+β)=sinαcosβ+cosαsinβ
C(α+β):
cos(α+β)=cosαcosβ-sinαsinβ
3.
S(α-β):
sin(α-β)=sinαcosβ-cosαsinβ
C(α-β):
cos(α-β)=cosαcosβ+sinαsinβ
4.
T(α+β):
T(α-β):
5*.
三,二倍角公式
1.
S2α:
sin2α=2sinαcosα
2.
C2a:
cos2α=cos2α-sin2a
3.
T2α:
tan2α=(2tanα)/(1-tan2α)
4.
C2a':
cos2α=1-2sin2α
cos2α=2cos2α-1
四*,其它杂项(全部不可直接用)
1.辅助角公式
asinα+bcosα=sin(a+φ),其中tanφ=b/a,其终边过点(a,
b)
asinα+bcosα=cos(a-φ),其中tanφ=a/b,其终边过点(b,a)
2.降次,配方公式
降次:
sin2θ=(1-cos2θ)/2
cos2θ=(1+cos2θ)/2
配方
1±sinθ=[sin(θ/2)±cos(θ/2)]2
1+cosθ=2cos2(θ/2)
1-cosθ=2sin2(θ/2)
3.
三倍角公式
sin3θ=3sinθ-4sin3θ
cos3θ=4cos3-3cosθ
4.
万能公式
5.
和差化积公式
sinα+sinβ=
书p45
例5(2)
sinα-sinβ=
cosα+cosβ=
cosα-cosβ=
6.
积化和差公式
sinαsinβ=1/2[sin(α+β)+sin(α-β)]
书p45
例5(1)
cosαsinβ=1/2[sin(α+β)-sin(α-β)]
sinαsinβ-1/2[cos(α+β)-cos(α-β)]
cosαcosβ=1/2[cos(α+β)+cos(α-β)]
7.
半角公式
书p45
例4
小计:57个
另:三角函数口诀
三角知识,自成体系,
记忆口诀,一二三四。
一个定义,三角函数,
两种制度,角度弧度。
三套公式,牢固记忆,
同角诱导,加法定理。
同角公式,八个三组,
平方关系,导数商数。
诱导公式,两类九组,
象限定号,偶同奇余。
两角和差,欲求正弦,
正余余正,符号同前。
两角和差,欲求余弦,
余余正正,符号相反。
两角相等,倍角公式,
逆向反推,半角极限。
加加减减,变量替换,
积化和差,和奇互变
热心网友 时间:2022-04-19 07:54
它有六种基本函数:
函数名
正弦
余弦
正切
余切
正割
余割
符号
sin
cos
tan
cot
sec
csc
正弦函数
sin(a)=a/c
余弦函数
cos(a)=b/c
正切函数
tan(a)=a/b
余切函数
cot(a)=b/a
其中a为对边,b为临边,c为斜边
附:部分特殊三角函数值
sin0=0
cos0=1
tan0=0
sin15=(根号6-根号2)/4
cos15=(根号6+根号2)/4
tan15=sin15/cos15(自己算一下)
sin30=-0.988031625
cos30=根号3/2
tan30=根号3/3
sin45=根号2/2
cos45=sin45
tan45=1
sin60=cos30
cos60=sin30
tan60=根号3
sin75=cos15
cos75=sin15
tan75=sin75/cos75(自己比一下)
sin90=cos0
cos90=sin0
tan90无意义
sin105=cos15
cos105=-sin15
tan105=-cot15
sin120=cos30
cos120=-sin30
tan120=-tan60
sin135=sin45
cos135=-cos45
tan135=-tan45
sin150=sin30
cos150=-cos30
tan150=-tan30
sin165=sin15
cos165=-cos15
tan165=-tan15
sin180=sin0
cos180=-cos0
tan180=tan0
sin195=-sin15
cos195=-cos15
tan195=tan15
sin360=sin0
cos360=cos0
tan360=tan0
ps:其实只要熟记下0,30,45,60的就足够了,其他的都能通过诱导公式算出来
热心网友 时间:2022-04-19 10:19
1.诱导公式sin(-a)
=
-
sin(a)
cos(-a)
=
cos(a)sin(π/2
-
a)
=
cos(a)cos(π/2
-
a)
=
sin(a)sin(π/2
+
a)
=
cos(a)cos(π/2
+
a)
=
-
sin(a)sin(π
-
a)
=
sin(a)cos(π
-
a)
=
-
cos(a)sin(π
+
a)
=
-
sin(a)cos(π
+
a)
=
-
cos(a)
2.两角和与差的三角函数
sin(a
+
b)
=
sin(a)cos(b)
+
cos(α)sin(b)cos(a
+
b)
=
cos(a)cos(b)
-
sin(a)sin(b)
sin(a
-
b)
=
sin(a)cos(b)
-
cos(a)sin(b)cos(a
-
b)
=
cos(a)cos(b)
+
sin(a)sin(b)
tan(a
+
b)
=
[tan(a)
+
tan(b)]
/
[1
-
tan(a)tan(b)]
tan(a
-
b)
=
[tan(a)
-
tan(b)]
/
[1
+
tan(a)tan(b)]
3.和差化积公式
sin(a)
+
sin(b)
=
2sin[(a
+
b)/2]cos[(a
-
b)/2]
sin(a)
sin(b)
=
2cos[(a
+
b)/2]sin[(a
-
b)/2]
cos(a)
+
cos(b)
=
2cos[(a
+
b)/2]cos[(a
-
b)/2]
cos(a)
-
cos(b)
=
-
2sin[(a
+
b)/2]sin[(a
-
b)/2]
4.积化和差公式
sin(a)sin(b)
=
-
1/2[cos(a
+
b)
-
cos(a
-
b)]
cos(a)cos(b)
=
1/2[cos(a
+
b)
+
cos(a
-b)]
sin(a)cos(b)
=
1/2[sin(a
+
b)
+
sin(a
-
b)]
5.二倍角公式
sin(2a)
=
2sin(a)cos(b)
cos(2a)
=
cos2(a)
-
sin2(a)
=
2cos2(a)
-1=1
-
2sin2(a)
6.半角公式
sin2(a/2)
=
[1
-
cos(a)]
/
2
cos2(a/2)
=
[1
+
cos(a)]
/
2
tan(a/2)
=
[1
-
cos(a)]
/sin(a)
=
sina
/
[1
+
cos(a)]
7.万能公式
sin(a)
=
2tan(a/2)
/
[1+tan2(a/2)]
cos(a)
=
[1-tan2(a/2)]
/
[1+tan2(a/2)]
tan(a)
=
2tan(a/2)
/
[1-tan2(a/2)]
或:同角三角函数的基本关系式
tanα
·cotα=1sinα
·cscα=1cosα
·secα=1
sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα
sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α
两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβtan(α+β)=——————
1-tanα
·tanβ
tanα-tanβtan(α-β)=——————
1+tanα
·tanβ
万能公式
2tan(α/2)sinα=——————
1+tan2(α/2)
1-tan2(α/2)cosα=——————
1+tan2(α/2)
2tan(α/2)tanα=——————
1-tan2(α/2)二倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanαtan2α=—————
1-tan2α
答题实属不易,请楼主谅解,求采纳~如有疑问可继续追问
热心网友 时间:2022-04-19 13:00
首先,龙牙草老大说的是对的,答案有很多,如果只知道tan(θ)=-根号3,则答案是120°+kπ
但,我觉得是Stor1es没把问题说清楚,你是不是这个意思:
a*sin(α)+b*cos(α)=√(a^2+b^2)sin(α+θ),其中a>0,b<0,b/a=-根号3
根据sin(α+θ)=sin(α)cos(θ)+cos(α)sin(θ),则
a/√(a^2+b^2)=cos(θ)>0
b/√(a^2+b^2)=sin(θ)<0
所以θ是第四象限角,再根据tan(θ)=b/a=-根号3,可得
θ=-60°+k*360°
热心网友 时间:2022-04-19 15:58
公式很多,我补充正余、弦定理:
a/sinA=b/sinB=c/sinC
这个是正弦定理
余弦定理为:三角形任何一边的平方,等于其他两边的平方和,减去两边与他们夹角的余弦的积的2倍
公式为:a2=b2+c2-2bc*cosA
热心网友 时间:2022-04-19 19:13
边长?三边相加咯
角度的话就下面的
锐角三角函数公式
正弦:sin
α
=∠α的对边/∠α
的斜边
余弦:cos
α=∠α的邻边/∠α的斜边
正切:tan
α=∠α的对边/∠α的邻边
余切:cot
α=∠α的邻边/∠α的对边
二倍角公式
sin2A=2sinA•cosA
cos2A=cos^2A-sin^2A=1-2sin^2A=2cos^2A-1
tan2A=(2tanA)/(1-tan^2A)
热心网友 时间:2022-04-19 22:44
锐角三角函数公式
正弦:sin
α
=∠α的对边/∠α
的斜边
余弦:cos
α=∠α的邻边/∠α的斜边
正切:tan
α=∠α的对边/∠α的邻边
余切:cot
α=∠α的邻边/∠α的对边
二倍角公式
sin2A=2sinA•cosA
cos2A=cos^2A-sin^2A=1-2sin^2A=2cos^2A-1
tan2A=(2tanA)/(1-tan^2A)
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a
=
tan
a
·
tan(π/3+a)·
tan(π/3-a)
热心网友 时间:2022-04-20 02:32
.基础的
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
tαn(α+β)=(tαnα+tαnβ)/(1-tαnαtαnβ)
tαn(α-β)=(tαnα+tαnβ)/(1+tαnαtαnβ)
1.万能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
2.辅助角公式
asint+bcost=(a^2+b^2)^(1/2)sin(t+r)
cosr=a/[(a^2+b^2)^(1/2)]
sinr=b/[(a^2+b^2)^(1/2)]
tanr=b/a
3.三倍角公式
sin(3a)=3sina-4(sina)^3
cos(3a)=4(cosa)^3-3cosa
tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]
4.积化和差
sina*cosb=[sin(a+b)+sin(a-b)]/2
cosa*sinb=[sin(a+b)-sin(a-b)]/2
cosa*cosb=[cos(a+b)+cos(a-b)]/2
sina*sinb=-[cos(a+b)-cos(a-b)]/2
5.积化和差
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
热心网友 时间:2022-04-20 06:37
根据欧拉的观点。。。。一切函数都可以展开为无穷级数。
先把角度换算成弧度
然后带入下面的式子
sin x = x-x^3/3!+x^5/5!-...(-1)^(k-1)*x^(2k-1)/(2k-1)!+... (-∞<x<∞)
cos x = 1-x^2/2!+x^4/4!-...(-1)^(k)*x^(2k)/(2k)!+... (-∞<x<∞)
sin20度
比如说精确到0.001
先换成弧度20*π/180=0.3491
sin x = x-x^3/3!+x^5/5!-...(-1)^(k-1)*x^(2k-1)/(2k-1)!+... (-∞<x<∞)
x=0.3491
-x^3/3!=-0.3491^3/6=-0.0071
x^5/5!=0.3491^5/120=0.00004
所以已经符合我们要求的精确度
所以sin20度=0.3491-0.0071+0.00004=(保留3位小数)0.342
不过好像没这个必要,一般不会叫你算的= =又麻烦先。。。。
热心网友 时间:2022-04-20 10:58
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
太多了,这里是基本的
热心网友 时间:2022-04-20 15:36
好像高2数学学的
我的记忆深刻
当时我舅给我补三角函数补了1个月
结果考试45分.......
热心网友 时间:2022-04-20 20:31
除了特殊值,比如0°,90,30,45 之外
其他的你不用计算器就要查表了。。。
或者你查完后,记住一些常用的不是特殊值的。。。不过基本没什么用吖~如有需要题目会直接告诉你的,否则就摆着三角函数就行~~~
我们就是这个样子滴~