发布网友 发布时间:2022-04-20 12:22
共2个回答
热心网友 时间:2022-04-07 07:11
验证码(CAPTCHA)全称为全自动区分计算机和人类的公开图灵测试(Completely Automated Public Turing test to tell Computersand Humans Apart)。从其全称可以看出,验证码用于测试用户是真实的人类还是计算机机器人。
1.获得验证码图片
每次加载注册网页都会显示不同的验证验图像,为了了解表单需要哪些参数,我们可以复用上一章编写的parse_form()函数。
>>> import cookielib,urllib2,pprint>>> import form>>> REGISTER_URL = 'http://127.0.0.1:8000/places/default/user/register'>>> cj=cookielib.CookieJar()>>> opener=urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))>>> html=opener.open(REGISTER_URL).read()>>> form=form.parse_form(html)>>> pprint.pprint(form)
{'_formkey': 'a67cbc84-f291-4ecd-9c2c-93937faca2e2', '_formname': 'register', '_next': '/places/default/index', 'email': '', 'first_name': '', 'last_name': '', 'password': '', 'password_two': '', 'recaptcha_response_field': None}>>> 1234567101112131415161718
上面recaptcha_response_field是存储验证码的值,其值可以用Pillow从验证码图像获取出来。先安装pip install Pillow,其它安装Pillow的方法可以参考http://pillow.readthedocs.org/installation.html 。Pillow提价了一个便捷的Image类,其中包含了很多用于处理验证码图像的高级方法。下面的函数使用注册页的HTML作为输入参数,返回包含验证码图像的Image对象。
>>> import lxml.html>>> from io import BytesIO>>> from PIL import Image>>> tree=lxml.html.fromstring(html)>>> print tree
<Element html at 0x7f8b006ba0>>>> img_data_all=tree.cssselect('div#recaptcha img')[0].get('src')>>> print img_data_all
data:image/png;base,iVBORw0KGgoAAAANSUhEUgAAAQAAAABgCAIAAAB9kzvfAACAtklEQVR4nO29Z5gcZ5ku3F2dc865
...
rkJggg==>>> img_data=img_data_all.partition(',')[2]>>> print img_data
iVBORw0KGgoAAAANSUhEUgAAAQAAAABgCAIAAAB9kzvfAACAtklEQVR4nO29Z5gcZ5ku3F2dc865
...
rkJggg==>>> >>> binary_img_data=img_data.decode('base')>>> file_like=BytesIO(binary_img_data)>>> print file_like
<_io.BytesIO object at 0x7f8aff6736b0>>>> img=Image.open(file_like)>>> print img
<PIL.PngImagePlugin.PngImageFile image mode=RGB size=256x96 at 0x7F8AFF5FAC90>>>> 123456710111213141516171819202122232425
在本例中,这是一张进行了Base编码的PNG图像,这种格式会使用ASCII编码表示二进制数据。我们可以通过在第一个逗号处分割的方法移除该前缀。然后,使用Base解码图像数据,回到最初的二进制格式。要想加载图像,PIL需要一个类似文件的接口,所以在传给Image类之前,我们以使用了BytesIO对这个二进制数据进行了封装。
完整代码:
# -*- coding: utf-8 -*-form.pyimport urllibimport urllib2import cookielibfrom io import BytesIOimport lxml.htmlfrom PIL import Image
REGISTER_URL = 'http://127.0.0.1:8000/places/default/user/register'#REGISTER_URL = 'http://example.webscraping.com/user/register'def extract_image(html):
tree = lxml.html.fromstring(html)
img_data = tree.cssselect('div#recaptcha img')[0].get('src') # remove data:image/png;base, header
img_data = img_data.partition(',')[-1] #open('test_.png', 'wb').write(data.decode('base'))
binary_img_data = img_data.decode('base')
file_like = BytesIO(binary_img_data)
img = Image.open(file_like) #img.save('test.png')
return imgdef parse_form(html):
"""extract all input properties from the form
"""
tree = lxml.html.fromstring(html)
data = {} for e in tree.cssselect('form input'): if e.get('name'):
data[e.get('name')] = e.get('value') return datadef register(first_name, last_name, email, password, captcha_fn):
cj = cookielib.CookieJar()
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
html = opener.open(REGISTER_URL).read()
form = parse_form(html)
form['first_name'] = first_name
form['last_name'] = last_name
form['email'] = email
form['password'] = form['password_two'] = password
img = extract_image(html)#
captcha = captcha_fn(img)#
form['recaptcha_response_field'] = captcha
encoded_data = urllib.urlencode(form)
request = urllib2.Request(REGISTER_URL, encoded_data)
response = opener.open(request)
success = '/user/register' not in response.geturl() #success = '/places/default/user/register' not in response.geturl()
return success1234567101112131415161718192021222324252627282930313233343536373839404142434445474849505152
2.光学字符识别验证码
光学字符识别(Optical Character Recognition, OCR)用于图像中抽取文本。本节中,我们将使用开源的Tesseract OCR引擎,该引擎最初由惠普公司开发的,目前由Google主导。Tesseract的安装说明可以从http://code.google.com/p/tesseract-ocr/wiki/ReadMe 获取。然后可以使用pip安装其Python封装版本pytesseractpip install pytesseract。
下面我们用光学字符识别图像验证码:
>>> import pytesseract>>> import form>>> img=form.extract_image(html)>>> pytesseract.image_to_string(img)''>>> 123456
如果直接把验证码原始图像传给pytesseract,一般不能解析出来。这是因为Tesseract是抽取更加典型的文本,比如背景统一的书页。下面我们进行去除背景噪音,只保留文本部分。验证码文本一般都是黑色的,背景则会更加明亮,所以我们可以通过检查是否为黑色将文本分离出来,该处理过程又被称为阈值化。
>>> >>> img.save('2captcha_1original.png')>>> gray=img.convert('L')>>> gray.save('2captcha_2gray.png')>>> bw=gray.point(lambda x:0 if x<1 else 255,'1')>>> bw.save('2captcha_3thresholded.png')>>> 1234567
这里只有阈值小于1的像素(全黑)都会保留下来,分别得到三张图像:原始验证码图像、转换后的灰度图和阈值化处理后的黑白图像。最后我们将阈值化处理后黑白图像再进行Tesseract处理,验证码中的文字已经被成功抽取出来了。
>>> pytesseract.image_to_string(bw)'language'>>> >>> import Image,pytesseract>>> img=Image.open('2captcha_3thresholded.png')>>> pytesseract.image_to_string(img)'language'>>> 1234567
我们通过示例样本测试,100张验证码能正确识别出90张。
>>> import ocr>>> ocr.test_samples()
Accuracy: 90/100>>> 1234
下面是注册账号完整代码:
# -*- coding: utf-8 -*-import csvimport stringfrom PIL import Imageimport pytesseractfrom form import registerdef main():
print register('Wu1', 'Being1', 'Wu_Being001@qq.com', 'example', ocr)def ocr(img):
# threshold the image to ignore background and keep text
gray = img.convert('L') #gray.save('captcha_greyscale.png')
bw = gray.point(lambda x: 0 if x < 1 else 255, '1') #bw.save('captcha_threshold.png')
word = pytesseract.image_to_string(bw)
ascii_word = ''.join(c for c in word if c in string.letters).lower() return ascii_wordif __name__ == '__main__':
main()12345671011121314151617181920212223
我们可以进一步改善OCR性能:
- 实验不同阈值
- 腐蚀阈值文本,突出字符形状
- 调整图像大小
- 根据验证码字体训练ORC工具
- *结果为字典单词
热心网友 时间:2022-04-07 08:29
可以接入验证码识别平台接口解决