发布网友 发布时间:2022-04-19 09:53
共3个回答
热心网友 时间:2023-08-27 09:03
1、在选择数据分析师这条路之前,一定要思考再三,虽然这条路看着光鲜靓丽(至少职业的薪酬收入类比其他行业不会好不少),但也是一条艰难前行之路,充满着未知、荆棘和困惑。
2、虽然数据分析这个行业有着天然的专业鄙视链(文理科的逻辑思维功底、编程语言接受程度上以及数理统计基础实实在在的存在差别,这也是甲方更信赖理工科出身的重要原因,因为社科或文艺类专业,很少有学校会严格地按照数理逻辑去制定学生的课程培养计划),但是并不代表文科生没有任何机会,因为大学以前,其实我们都没正式接触过编程或统计学,大学本科更多的是提升一个人的思维、而不是过硬的专研能力。
3、如果你要坚定的选择这条路,就必须克服各种依赖症,比如安装一个R语言或Python软件,从庞大的数据中得出客观的结论过程,用学到的知识去分析数据的价值等等,一定要动手动脑去实战,不要单凭以前的文科思维(更注重思维的创造和个性的发扬),理性思维和客观科学更重要。
4、动手实践和实习参与项目是很好的数据科学或者数据分析的开端,只学不练假把式,只有直接用于实战,才能看出来你学的东西到底有多少能够落地,能够用于提升业务的价值。
5、在求职以前,倘若时间允许,把R语言、Python(数据科学相关模块)、SQL(可以选择一个平台,比如MySQL)这三大关卡早点过了。
6、如果你还是在校学生,学会分清各种事情的轻重缓急,比如各种无聊拉人凑场子讲座、听课发礼品的营销*课,无效应酬社交,如果全部都用在数据分析的学习上,你会发现你的时间多了很多,自然你也可以更早地追上同行的脚步。
7、脚踏实地的去走自己的路,不会的多写、多看、多问(问真正有价值的问题)、多总结、多交流,给自己足够的转行周期。
8、学会融会贯通不同领域的知识,触类旁通、横向迁移,这样学起来才有越学越有通透的感觉,否则你只能增加笔记本的厚度,徒增烦恼罢了。
热心网友 时间:2023-08-27 09:03
学什么?
数据分析要学的内容大致分为6个板块,分别是:
Excel
精通Excel分析工具,掌握Excel经典函数,准确快速地完成数据清洗,利用Excel数据透视及可视化,可以透过现象看本质。
MySQL
理解MySQL数据库相关概念及存储原理,掌握SQL基本的增、删、改、查等语法掌握数据库性能调优策略,熟练使用SQL进行数据清洗与数据规范化。
BI商业智能工具
了解商业智能的核心价值,精通FineReport、FineBI,快速挖掘数据价值,掌握行业场景应用。
Python
学习Python基本编程语言知识,了解Python程序的计算机运行原理,能够使用Python编程处理工作中的重复性工作。 掌握网络数据抓取技术,Python数据库应用开发,实现Python数据可视化操作,提高数据收集和数据分析能力。 掌握Python数据分析处理基础库,具有应用Python语言解决数据分析中实际问题能力。
数据分析思维与理论
掌握微积分、线性代数、概率论、参数估计、假设检验、方差分析等数理统计基础 掌握基本的数学、统计学知识,学习数据运营方*、机器学习夯实基础,提升数据敏感性,建立数据思维和数据素养。
掌握如何撰写行业分析报告和数据分析项目流程,能够完成数据分析项目。 掌握常见的数据运营方法如AARRR、漏斗、ABTset、描述性统计分析、相关分析、指数系统搭建等,培养利用多种数据分析方法解决实际工作问题能力。
机器学习
掌握机器学习常用经典算法原理及sklearn代码的实现、机器学习算法的选取、调优及模型训练、神经网络的特点及原理,增加个人核心竞争力,拥有能够用相关数据挖掘算法为解决实际问题能力;奠定人工智能算法入门基础。
如何学?
至少花三个月掌握技术
“磨刀不误砍柴工”,要想从为“工人”,甚至熟悉工,也需要很多技能,因为怎么说数据分析师也是技术工种。我觉得至少你要花3个月时间来学习一些最基础的知识。
花1个月学习数据库知识。
花1-2个月学习基础的统计学知识。
花1个月学习点linux的知识。
花1~2个月去学习最基础的数据分析软件的操作。
数据分析入门容易提高难,题主目前处于初级阶段,可以通过自学观看视频,或者系统培训来提高自己,已工作来说,接受系统培训会更加快速,更推荐跟着课程系统性的学习,搭建好逻辑框架。
热心网友 时间:2023-08-27 09:04
如果想从事数据分析行业的话,还是需要系统的学习下的,一般学习过程中都会配合很多项目案例进行学习,这样好学易懂,还能积累经验。