发布网友 发布时间:2022-04-25 16:48
共1个回答
热心网友 时间:2022-04-11 02:34
很多,主要说下监督学习这块的算法哈。欢迎讨论。
svm,支撑向量机,通过找到样本空间中的一个超平面,实现样本的分类,也可以作回归,主要用在文本分类,图像识别等领域,详见:;
lr,逻辑回归,本质也是线性回归,通过拟合拟合样本的某个曲线,然后使用逻辑函数进行区间缩放,但是一般用来分类,主要用在ctr预估、等;
nn,神经网络,通过找到某种非线性模型拟合数据,主要用在图像等;
nb,朴素贝叶斯,通过找到样本所属于的联合分步,然后通过贝叶斯公式,计算样本的后验概率,从而进行分类,主要用来文本分类;
dt,决策树,构建一棵树,在节点按照某种规则(一般使用信息熵)来进行样本划分,实质是在样本空间进行块状的划分,主要用来分类,也有做回归,但更多的是作为弱分类器,用在model embedding中;
rf,随进森林,是由许多决策树构成的森林,每个森林中训练的样本是从整体样本中抽样得到,每个节点需要进行划分的特征也是抽样得到,这样子就使得每棵树都具有独特领域的知识,从而有更好的泛化能力;
gbdt,梯度提升决策树,实际上也是由多棵树构成,和rf不同的是,每棵树训练样本是上一棵树的残差,这体现了梯度的思想,同时最后的结构是用这所有的树进行组合或者投票得出,主要用在、相关性等;
knn,k最近邻,应该是最简单的ml方法了,对于未知标签的样本,看与它最近的k个样本(使用某种距离公式,马氏距离或者欧式距离)中哪种标签最多,它就属于这类;