发布网友 发布时间:2022-04-24 09:46
共2个回答
热心网友 时间:2022-06-18 16:03
平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为(√),其中属于非负实数的平方根称算术平方根。
一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数
有效数字是指在分析工作中实际能够测量到的数字
整式的加减
代数式。代数式的值。整式。
单项式。多项式。合并同类项。
去括号与添括号。数与整式相乘。整式的加减法。
具体要求:
(1)掌握用字母表示有理数,了解用字母表示数是数学的一
大进步。
(2)了解代数式、代数式的值的概念,会列出代数式表示简单的数量关系,会求代数式的值。
(3)了解整式、单项式及其系数与次数、多项式次数、项与项数的概念,会把一个多项式接某个字母降幂排列或升幂排列。
(4)掌握合并同类项的方法,去括号、添括号的法则,熟练掌握数与整式相乘的运算以及整式的加减运算。
(5)通过用字母表示数、列代数式和求代数式的值、整式的加减,了解抽象概括的思维方法和特殊与一般的辩证关系。
整式的乘除
l·整式的乘法
同底数幂的乘法。单项式的乘法。幂的乘方。积的乘方。单项式与多项式相乘。多项式的乘法。乘法公式:
(a十b)(a一b)=a2-b2
(a±b)2=a2±2ab+b2
(a±b)(a2±ab+ b2)=a3±b3
具体要求:
(1)掌握正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),会用它们熟练地进行运算。
(2)掌握单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会用它们进行运算。
(3)灵活运用五个乘法公式进行运算(直接用公式不超过三次)。
(4)通过从幂运算到多项式的乘法,再到乘法公式的教学,初步理解“特殊———一般——一特殊”的认识规律。
2·整式的除法
同底数幂的除法。单项式除以单项式。多项式除以单项式。
具体要求:
(1)掌握同底数幂的除法运算性质,会用它熟练地进行运算。
(2)掌握单项式除以单项式、多项式除以单项式的法则,会用它们进行运算。
(3)会进行整式的加、减、乘、除、乘方的较简单的混合运算,灵活运用运算律与乘法公式使运算简便。
1.分式
分式。分式的基本性质。约分。最简分式。
分式的乘除法。分式的乘方。
同分母的分式加减法。通分。异分母的分式加减法。
具体要求:
(l)了解分式、有理式、最简分式、最简公分母的概念,掌握分式的基本性质,会熟练地进行约分和通分。
(2)掌握分式的加、减与乘、除、乘方的运算法则,会进行简单的分式运算。
2.零指数与负整数指数
零指数。负整数指数。整数指数幂的运算。
具体要求:
(l)了解零指数和负整数指数幂的意义;了解正整数指数幂的运算性质可以推广到整数指数幂,掌握整数指数幂的运算。
(2)会用科学记数法表示数。
热心网友 时间:2022-06-18 16:03
不会