方差与标准差的含义?

发布网友 发布时间:2022-04-25 00:02

我来回答

1个回答

热心网友 时间:2023-10-16 10:43

方差(Variance)也称变异数、均方。作为统计量,常用符号S2表示,作为总体参数,常用符号σ2表示。它是每个数据与该组数据平均数之差乘方后的均值,即离均差平方后的平均数。方差,在数理统计中又常称之为二阶中心矩或二级动差。它是度量数据分散程度的一个很重要的统计特征数。标准差(Standard deviation)即方差的平方根,常用S或SD表示。若用σ表示,则是指总体的标准差,本章只讨论对一组数据的描述,尚未涉及总体问题,故本章方差的符号用S2,标准差的符号用S。符号不同,其含义不完全一样,这一点望读者能够给予充分的注意。二、方差与标准差的意义 方差与标准差是表示一组数据离散程度的最好的指标。其值越大,说明离散程度大,其值小说明数据比较集中,它是统计描述与统计分析中最常应用的差异量数。它基本具备一个良好的差异量数应具备的条件:①反应灵敏,每个数据取值的变化,方差或标准差都随之变化;②有一定的计算公式严密确定;③容易计算;④适合代数运算;⑤受抽样变动的影响小,即不同样本的标准差或方差比较稳定;⑥简单明了,这一点与其他差异量数比较稍有不足,但其意义还是较明白的。除上述之外,方差还具有可加性特点,它是对一组数据中造成各种变异的总和的测量,能利用其可加性分解并确定出属于不同来源的变异性(如组间、组内等)并可进一步说明每种变异对总结果的影响,是以后统计推论部分常用的统计特征数。在描述统计部分,只需要标准差就足以表明一组数据的离中趋势了。标准差比其他各种差异量数具有数学上的优越性,特别是当已知一组数据的平均数与标准差后,便可知占一定百分比的数据落在平均数上下各两个标准差,或三个标准差之内。对于任何一个数据集合,至少有1一1/h2的数据落在平均数的h(大于1的实数)个标准差之内。(切比雪夫定理)。例如某组数据的平均数为50,标准差是5,则至少有75%(1一1/22)的数据落在50-2*5至50+2*5即40至60之间,至少有88.9%(1一1/32)的数据落在50-3*5至50+3*5=35—65之间 (h=2,1-1/h2=1-1/22=3/4=75%,h=3, -1/h2=1-1/32=8/9=88.9%)。如果数据是呈正态分布,则数据将以更大的百分数落在平均数上下两个标准差之内(95%)或三个标准差之内 (99.%)。如下地址自己慢慢看了http://student.zjzk.cn/course_ware/web_xlyjytjx/skxt/chap0301.htm</SPAN>

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com