发布网友 发布时间:2022-04-22 05:04
共1个回答
热心网友 时间:2023-09-26 11:12
高中数学立体几何知识点一
数学知识点1、柱、锥、台、球的结构特征
(1)棱柱:
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
数学知识点2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
数学知识点3、空间几何体的直观图——斜二测画法
斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
高中数学立体几何知识点二
一、平面
通常用一个平行四边形来表示.
平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.
在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c…l,m,n…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:
a)A∈l—点A在直线l上;Aα—点A不在平面α内;
b)lα—直线l在平面α内;
c)aα—直线a不在平面α内;
d)l∩m=A—直线l与直线m相交于A点;
e)α∩l=A—平面α与直线l交于A点;
f)α∩β=l—平面α与平面β相交于直线l.
二、平面的基本性质
公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.
公理2如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.
公理3经过不在同一直线上的三个点,有且只有一个平面.
根据上面的公理,可得以下推论.
推论1经过一条直线和这条直线外一点,有且只有一个平面.
推论2经过两条相交直线,有且只有一个平面.
推论3经过两条平行直线,有且只有一个平面.
公理4平行于同一条直线的两条直线互相平行.